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TRANSIENT STRESS INTENSITY FACTORS FOR A FINITE
CRACK IN AN ELASTIC SOLID CAUSED BY A
DILATATIONAL WAVEY}

STEPHEN A. THaui and TsIN-HwEr Lu§

Department of Mechanics, Illinois Institute of Technology, Chicago, Illinois

Abstract—The diffraction of a plane dilatational wave of arbitrary profile by a finite line crack in an infinite
elastic medium is analyzed by the generalized Wiener-Hopf technique. Explicit expressions are derived for the
dynamic normal and shear stress intensity factors at each crack edge as functions of time, angle of incidence and
Poisson’s ratio. These results are exact from the instant the incident wave arrives at a given edge until a diffracted
P wave reaches the opposite edge, is rediffracted, and then returns to the original edge, i.e. during two P wave,
crack width transit times. Numerical results for an incident wave with a step function stress profile are presented
for several angles of incidence and the peak normal stress intensity is found to be 30 per cent greater than the
analogous static factor. The magnitude of the jump in the vertical displacement across the crack is also calculated
for the case of normal incidence, during a single P wave transit time and the crack is found to remain open
in this period.

1. INTRODUCTION

THE calculation of stresses around a crack in an elastic medium is a problem of long-
standing interest in fracture mechanics. For the case of time-harmonic dynamic loading,
Sih and Loeber have recently obtained results for the stress intensities at the edges of a
finite crack subjected to a plane incident stress wave [1]. They treated both harmonic
dilatational (P wave) and vertical shear (SV wave) waves and in an earlier paper they
considered an incident, harmonic, horizontal shear wave (SH wave) [2].

In this paper we treat the analogous transient problem of diffraction of an arbitrary
plane dilatational wave by a finite crack in an infinite elastic solid. As done in our previous
study on the diffraction of a plane transient SH wave by a finite crack [3], we employ the
so-called generalized Wiener—Hopf method which yields an iteration series solution that
is exact for a finite period of time which increases with each increasing order of the iteration.
This technique has also been used by us [3], Kostrov [4] and Flitman [5], in problems of
diffraction of elastic waves by a finite rigid strip. We are again successful here in obtaining
explicitly zeroth and first order expressions for the stress intensity factors. The first order
results are exact from the time the incident wave reaches the crack until two P wave,
crack width transit times have elapsed. The peak stress intensity factors are found to occur
at the instant when the first scattered Rayleigh waves, which propagate along the crack
surfaces, arrive at the given crack edge. For later times than considered here, the exact
generalized Wiener—Hopf iteration solution is no longer practical for calculating numerical
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results. However, in all the cases cited above, including the present study, peak responses
are found to occur in the time period of two crack or rigid strip transit times.

The application of the Wiener—-Hopf method for the finite strip or slit diffraction
problem is discussed in chapter V of Noble’s book [6], but only for high-frequency scalar
harmonic waves and for far-field calculations. Then the results are asymptotic rather
than exact.

2. DESCRIPTION OF PROBLEM

The infinite elastic solid shown in Fig. 1 contains a plane crack of unit width and
infinite length situated at y = 0 and 0 < x < 1.} A plane transient compressional wave
impinges on the crack with its propagation vector perpendicular to the z-axis and at an
angle o from the positive x-axis. The problem is therefore taken as one of plane strain in
which the displacements are independent of z and can be expressed in terms of the com-
pressional (P wave) and shear (S wave) wave potentials, ¢(x, y, t) and ¥(x, y, t), respectively,
as

u = 0¢/dx+ /0y, v = 0¢/0y—Y/Ox, w = 0 (1)

With dots over a function indicating differentiation with respect to time, the equations of
motion become

Vip—¢p =0, VH—x% =0 2)
where
k= [2-2v/(1-2v)]* (3)

Pi Crack
5 / ane Crac
|

o] X

Incident Wave

FiG. 1. Geometry of problem.

+ The Cartesian coordinates x, y, z have been normalized by the actual physical width of the crack. Also, the
dimensionless time adopted here is equal to the actual time normalized by the time for a P wave to transverse
the width of the crack. Hence, in these dimensionless coordinates, the P and S wave velocities become unity and
1/ (< 1), respectively.
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is the ratio of the P wave velocity to the velocity of the S wave.} Note that for real elastic
solids for which the Poissons ratio v is in the range 0 < v < §, x > 2% The stresses in the
medium, normalized by the shear modulus, are calculated from Hooke’s law as

T,‘j = u,-,}-+uj,i+(h’2—2)§,~juk’k (4)

in Cartesian tensor notation.
The incident wave, indicated with superscript (i), is given by

oY = ft—xcosa—ysina), YV =0 (5)

where f is identically zero when its argument is negative, but otherwise is an arbitrary
waveform. Thus the initial time for the problem is the instant when the wave (5) reaches
the leading edge of the crack, x = 0. Ahead of the advancing plane front the medium is
undisturbed.

The stresses produced by the incident wave are

@ = wr-2sinfa)f, @ =(?-2cos’a)f 1) =sin2af (6)

In the numerical example in Section 5, f is taken as the unit step function. Then in the
long time limit the incident stress wave field becomes a biaxial state of static tension of
magnitude k? at an angle « from the positive x-axis and of magnitude (x> — 2) in the perpen-
dicular direction. Thus, at large times the dynamic crack-tip, stress intensity factors
should approach the static ones produced by this biaxial loading.

The scattered waves (s) which are added to the incident waves to form the total field
are determined from equation (2) and the boundary conditions

) = —10) at y=0, 0<x<1
. (7
9 =—10 aty=0, O<x<l1

which specify that the crack surfaces are separated and free of traction. Also to guarantee
a unique solution we require that the displacements be finite at the edges of the crack and
that the scattered waves are outgoing.

3. SOLUTION OF PROBLEM

To begin the analysis of the problem we decompose the incident wave into even and
odd functions of y as

P = 9P+ ¢ (8
where

¢ = 3f(t—xcosa—ysina)+1f(t—xcosa+ysina) 9)

+ The Cartesian coordinates x, y, z have been normalized by the actual physical width of the crack. Also, the
dimensionless time adopted here is equal to the actual time normalized by the time for a P wave to transverse
the width of the crack. Hence, in these dimensionless coordinates, the P and § wave velocities become unity and
1/x (< 1), respectively.

1 This assumption is examined in Section 4.
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and then treat the scattering problems for the even and odd incident waves separately.
From the geometry it follows that in the symmetric problem (involving ¢%) ¢, u, 7, and
»» Will be even functions of y for both the incident and scattered waves, while y, v and 7,
will similarly be odd in y. In the anti-symmetric problem (with ¢} the even and odd
conditions for these fields are reversed. For each problem we need consider only the
half-space region y > 0.

(@) Symmetric problem

In the symmetric problem the incident P wave is given by equations (9) with the upper
sign. It produces zero shear stress and normal displacement along y = 0 and generates the
normal stress at y = 0

™9(x,0,1) =T, f{t—xcosa) (10)

with I', = k*~2cos? «. Furthermore, since the scattered wave field is continuous at
y = 0, except possibly along the crack where it may jump, we know that v and © will
be zero at y = 0 for x < 0 and x > 1. Hence, from equation (7) 7{¥) is known along the
entire x-axis and by introducing specific functions to be determined for the unknown
boundary values of v'¥ and 7! along y = 0, we can extend conditions (7) to

9(x,0,) =0 forall x (12a)
to(x,1) forx <O
t(x,0,6) =5 =T f(t—xcosa) for0 < x <1 (13a)

Tdx—1L18 forl <x

where the factor x?/2(x%—1) in equation (11a) and the time derivatives of 7, and 1, in
equation (I3a) are introduced for convenience in subsequent algebraic manipulations.
We take g, 17, and 1, to be identically zero along the x-axis outside the respective intervals
where they do not define boundary data for the scattered wave field.

Physically, since the incident wave is continuous everywhere, x2g(x, t)/(x? —1) is the
total jump in the vertical displacement along the crack. We shall calculate this function
in Section 4. Also, 1, and 7, contain the total dynamic crack-tip, stress-intensity factors
for the normal stresses at the tips x = 0 and 1, respectively.t

To solve equations (2) for the scattered waves we employ the Wiener—Hopf method.
First the Laplace transform in ¢t and the Fourier transform in x are applied to the complete
set of governing equations. The Laplace transform is indicated with an overbar as

fis) = j: f@ye = dt (14

+ Recall that v is an even function and hence continuous at y = 0 in the anti-symmetric problem, while ¢,
and 1, are odd functions and thus vanishat y = Oforx < Oand x > 1. The total jump in the horizontal displace-
ment along the crack and the shear stress intensity factors are provided by the solution of the anti-symmetric
problem in Sub-section (b}, below.
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where s may be treated as a positive real parameter throughout the analysis. The Fourier
transform is specified by the corresponding upper case letter as

F((s) = f i) e dx (152)

where the Fourier transform parameter is taken as {s ({ = £+in) instead of {, again for
convenience in subsequent algebraic calculations. Thus the inverse Fourier transform
becomes

o« +ic

109 =5 f F(ls) €% d¢ (15b)

— o0 +ic

where ¢ is any constant that places the line ¢ +ic (— o0 < & < o) in a region of the {-plane
where F({s) is an analytic function.

In applying the Laplace transform, we recall from the definition of the initial time for
the problem, that zero initial conditions hold for the scattered waves. Thus, the appropriate
doubly transformed solutions of equations (2) in y > 0 become

D=4 s ? = Be b» (16)
with
a? = {241, B? = 2+ a7

To render « and B single-valued, the usual branch cuts are taken in the {-plane along the
imaginary axis: fromng =1ltoowandyp = —1to —c0o foraandyp =xtoccandn = —«k
to — oo for B.

Next, the doubly transformed boundary conditions along y = 0 are found to be

VO = xk2Gg/2x?— 1) (11b)
YO =0 (12b)

- — - i, f .
) _ —ils ! lf __ pa—scosa—ils 13b
T4 s[T++e Y_+C—icosa(1 e ):| (13v)

where the +, — and E subscripts refer to regions in the {-plane in which the various
Fourier transforms are known to be analytic functions. The + and — regions are the
overlapping half-planes # > —1 and # < 1, respectively, while the E region is the entire
{-plane. They are determined as follows: since T4(x, s) and T,(x— 1, s) represent outgoing
waves emanating from the crack tips x = 0, 1, respectively, they will contain the exponential
factors exp(sx) and exp(s—sx), respectively. Thus, the Fourier transform integral for 7,
converges and hence is analytic in the + region, n > —1, while that for 7, converges in
the — region, n < 1. Furthermore, the Fourier transform of g(x,s) is a proper integral
and so it converges to an analytic function in the entire {-plane. Note that, because the
apparent pole at { = icosa in equation (13b) is actually a removable one and from the
choice of branch cuts for o and §, all the Fourier transforms are analytic in the overlap
strip | < 1.
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By substitution of equations (16) into the transforms of equations (1) and (4) and then
into equations (11b)(13b) we obtain three equations for the five unknowns A4, B, Gg,
Y, and Y_. Elimination of A and B from these equations yields the generalized Wiener—
Hopf equation:

G M +IK(O) = Ty e Tt gsemaisy (18)
{—icosa
where
K(0) = RQ/20c* - D2 +yY) (19
with
R() = 20 +x*)* —4%p (20)

being Rayleigh’s function. This function vanishes only at { = +iy where y is the ratio of
the P wave velocity to the velocity of the Rayleigh surface wave for the medium and y
depends only on Poisson’s ratio. For real elastic solids, y > k, so that the Rayleigh wave
velocity is less than that of the shear wave. The function K({) has neither poles nor zeros
and as [{] — o0, |K| - 1. The branch points at { = +i and +ix and the zeros at +iy in
R({) indicate the occurrence of scattered compressional and shear waves from the tips of
the crack and, in addition, Rayleigh waves will propagate back and forth along its surface.

To solve the Wiener—Hopf equation (18) we follow the technique used in Refs. [3-5].
First the function K({) is factored into two functions that are analytic in the overlapping
+ and — regions as

K(Q) = K(DK_-©O 21)

1 an*n? - 1) 2 —n?*] d
K.(0) = exp{—;fl tan“[ i (?2q2_)x(2)2 ) ]n;il} (22)
so that K {{} = K_{—{). Details for accomplishing the above factorization are given by
Fredricks [7] in connection with a Wiener—Hopf problem for a half-space in contact with
a fluid quarter-space. Note, however, that in [7] the K function is the reciprocal of equation
(19) and the complex transform plane is rotated by 90° from our {-plane.
Next, we change { in equation (18)to {’ = & + in’ and divide both sides by 27iD ('K — ()
where

where

D)) = €+ C+inK (). (23)

The resulting equation is then integrated from ¢ = —oo to & = oo along a horizontal
line L, in the {'-plane located in 4’| < 1 and the point { is taken above this line. The
integral of the left-hand side can be shown to be zero since the integrand is analytic below
L, and the edge conditions at x = 0, 1 ensure that |G| — 0 sufficiently rapidly as |{'| - o
for the integral taken on an infinite semi-circle in the lower {’-plane to vanish. Furthermore,
from the decomposition theorem for functions analytic in a strip [6], the integral of the
right-hand side is a + function. The result becomes

<= | D) | S D) e ¥
T*(‘:s)‘[m(icosa) I]C—icosa 2ni Jp, D (WD)
: [T_(C'S)—M] ar (24a)
{'—icosua

where it has been assumed that the point {’ = i cos « lies above L.
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Similarly, we can divide equation (18), after changing { to {’, by 2mniD _({')({'—{)
exp(—i{’s) and integrate both sides from &’ = — oo to + oo alongaline L, lyingin|y| < 1
with the point { now located below L,. Again, the integral of the left-hand side can be
shown to be zero while the integral of the right side is a — function. With the point
{’ = icos a taken below L, the result is

_ B D—(C) lrlf e ~scosa D-(C) ei;"s
T-ls) = [I“D_(icosa)] {—icosa | 2mi J,D(ONC=0)
1 5 iryf ,
[ Y_{{ S)+m~—C’—~icos a] df. (24b)

Thus, we obtain the pair of coupled singular integral equations (24) which are typical
of those occurring when the Wiener—-Hopf method is applied to a problem with a finite
discontinuity barrier [3-6]. As done in [3-5] we solve them by the standard iteration
procedure. The first terms on the right sides of equations (24) are the “zeroth order”
solutions Y _ . Substitution of these expressions for Y; _ into the integrals in equations
(24) produces the “first order” solutions Y**_, and so on. Note that by this process the
“nth order™ solution will be equal to the (n— 1)th order™ solution plus an integral of the
{n— D)th solution. Remarkably, it can be shown that the inverse Laplace transform of this
iteration series is always a finite one for any finite time and so an exact solution is obtained
at any stage of iteration up to a finite value of time which increases with increasing order
of iteration. This has been shown in [4, 5] and will be illustrated below for the zeroth and
first order solutions.

From equations (24) the zeroth order solutions are

© _ D, i, f

i [D"'(ic"s“) ! {—icosa (25a)
© _ | D-(@Q) iy fe e

T [1 D_(icosa)| {—icosa (25b)

which correspond to the exact solutions for the separate scattering of the symmetric
incident P wave by the semi-infinite cracks,0 < x and x < 1, respectively. Thus, physically,
we expect that these results are exact until the P waves scattered at the crack edges interact
with the opposite edges, i.e. until ¢t = 1+cosa at x = 0 and until ¢ = 1 at x = 1.+ This
indeed will now be shown mathematically.

Substitute equations (25) into equations (24} to find the first order results,

D-{-(C)rlf seoss D_(Cl)e—ig"s d{l

(1) _ YO se

T =T+ 2D (icosa) © “J.Ll D (-0 —icosa) (262)
Yo = yo DO D.@)es dr (26b)

2rD i (icos o) Jp, D_(CYW' = (' —icosa)’

t Observe from Fig. 1 that the incident P wave does not reach the edge x = 1 until t = cos « as indicated by
the shifting factor exp(— s cos a) in equation (25b).
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To interpret these expressions we first deform the integration paths in equations (26a)
and (26b) around the branch cuts along the #'-axis in the lower and upper (’-planes,
respectively. With #' then changed to A the results become,

(1) — (0)__DM —scosa ” (AZ_K2/2)2(1_1)5 ~2s
=T 2nD_(icosa) 3(1 Crinarnr T hae " i
le('{_l)(iz_KZ)é
" £ {+id
D_QOryf j(;‘”(lz—'czﬁ)z(l—l)%
2D (icosa)| Ji  (C—iA+1)

F(A,a)e™ % d,l] (27a)

YW = YO _ FA,n—x)e *dA

w0 127 _ 2_ 2\
+£ 220 ;)_(AM K?) F(M_a)e_isdi] (27b)

where

(A+7)K3(id)
(A+cos a)(A—y)(A* —a2)(A% —a3)

F(i, o) = (28)

and § means the Cauchy principal value integral which occurs because of the pole at
A = yalong the path of integration. The constants a?, a3 and y? are zeros of the “‘rationalized
Rayleigh’s function”,

160> —1)(42 —y*)(A* —a?)(A® — a3) = [4A2 (A% — 1)} (A2 —k?)* — (242 —K2)?]
4N A2 =D A kD)4 (222-KD, (29)

but for real materials ai and a? are, depending on the value of Poisson’s ratio, either
complex conjugates or real numbers less than unity. For example, with v = %,
a? =3(3-3%/4, a3 = % and y* = 3(3+3%)/4. In any case A = y is the only singularity
in the integrands in equations (27) along the path of integration.

Now we can interpret physically the first order results. The two integrals in each of
equations (27) are recognized as Laplace transforms of specific functions that are zero for
t <1 and t < k. Thus, in equation (27a) where they are multiplied by exp(—s cos a),
these integrals represent P and S waves that arrive at the crack tip x =0 att = 1+cosa
and t = k+cos a, respectively. However, these correspond precisely to the times when the
first scattered P and S waves which emanate from the crack tip at x = 1 at ¢t = cos a will
reach the opposite tip. In other words, the integrals in equations (27) represent the first
interaction effects of the waves scattered from the two crack tips. In equation (27b) the
integrals correspond to the P and § waves scattered at the tip x = 0 and which arrive at the
tip x =1 at ¢t = 1 and t = «, respectively. The propagation of the Rayleigh waves along
the crack surfaces from one tip to the other is signified by the poles at 1 = y in the integrands.

Since the P waves rescattered at each tip will not return to the opposite tip for another
unit of time, we expect that the first order solutions should be exact until ¢ = 2 and
t = 2+cos o in equations (27a) and (27b) respectively. This can be verified mathematically
by substituting equations (27) back into equations (24). One obtains the first order solution
plus four different double integrals that represent the rescattered waves (PP, PS, SP, SS).
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Their inverse Laplace transforms can be shown to be zero until t = 2, t = 1+« (for both
PS and SP), and t = 2xk, respectively. In fact, we can deduce in general that

Y = Y2 for0<t<2n

Y@+D = Y2 forO0<t < 2n+1+cosu (302

and

YW = Y@~ forcosa < 2n+cosa

Y@r+h = Y@m forcosa <t <2n+1 (30b)
Here, we stop at the first order solution. It will yield exact results for the stress intensities
at each crack tip up to two P wave, crack width, transit times beyond the incident wave
arrival time.

Crack-tip normal stress intensities. Observe from equations (13) that the inverse trans-
forms of equations (27), multiplied by s, yield the normal stresses in front of the two crack tips
along y == 0. However, since we are interested in the leading term for the stresses near the
crack tips, the Fourier transform inversion [equation (15b)] need be performed only on
the leading term in the expansion of equations (27) for |{| — co. Noting the definition of D,
in equation (23) and that |[K.| - 1 as |{| — <0, we can readily show that the dominant
term in each of equations (27) is proportional to |{|~*. The inverse Fourier transform of
these terms becomes

cos o/2 __sina/2 eses] () (312)
y+cosa)K ,(icos ) 2n(y—cosa)K _(icosa)

243 3
ST x) — (;r—lsa?l) Iyf (5)[(

as x — 07 and

25 sin ot/2 e 7se0%¢ cos a/2J (m~a)

T x—1) > | —— - L 31b
ST =)~ (n(x—l)) Iﬂl]‘(s)[(y—coson)K_(icosoz) 2n(y + cos K (i cos a) 310)
as x — 17, Of course, we recall that 74(x}) =0 for x > 0 and T,(x—1)=0 for x < 1.
In equations {31)

i

o % o0
T = £ (zz_KZ/z)Z(ﬁ%) m,a)e-“dHJC PA—1)(R2—xF(h e di (32

X

where F(4, x) was defined by equation (28).

Since the inverse Laplace transform of equation (32), J4(z, «), is obtained by inspection,
the inverse Laplace transforms of equations (31) are readily found in terms of convolution
integrals. Details are presented for the particular case where

1
f© =3t (8) = . (33)

N

Then the stresses associated with the incident wave (6) approach the uniform static values,
ast — oo,

Tax = rOs Tyy = rl’ Txy = 1-‘2 (34)

where I'y ; , are the coefficients of f in equations (6).
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Now, it is well known [8] that the Jeading term for the static normal stress at each
crack tip produced by the loading (34) becomes for our geometry (Fig. 1),

r -
7,,(x,0) > Txlﬁ asx -0 (35a)

x—- 1" (35b)

Hence, we define the “normalized dynamic stress-intensity factors™ by dividing equations
(31a) and (31b) by equations (35a) and (35b), respectively. The inverse Laplace transform
of the result is denoted by K,(0 or 1,t) corresponding to the crack tip at x =0 or 1,
respectively. For large times we expect K| — 1.

Noting that the inverse Laplace transform of s™* is 2(t/)* and performing the afore-
mentioned steps, we obtain the first order results:

4[4 t*cos o2 sino/2 (t—cos a)¥* J (¢, )
KM, 1) = 2= - . -
1 0,0) (n) l:(y +cosa)K  (icosa) 2a(y—cosa)K_(icos ) H(t=cos ) (36a)
4\l (t—cosw)? sin a/2 cosa/2tr* J,(t, m—a)
K1, 1) = 23 = H(t— - —
Tt (n) I:(y—cos a)K _(i cos o) (t—cosa) 2n(y+cos a)K (i cos a) (36b)
where H(t) is the unit step function and * denotes the convolution operation,
t
frg= se-ngi s
0
Thus, for example,
t l—1 +
t¥x J,(t,n—a) = H(t—1) f (t—A)*% - KZ/Z)Z(m) F(A, m—a)dA
1
t
+H(t—x) j: (t—A2A-1D)(A2 — k2P F(A, n— o) dA. 37
K

Note that fort < y, the pole at 4 = y in F(4, = — o) lies outside the above integration intervals
and the integrals are actually conventional. However, for ¢t > y the pole falls within the
range of integration and the Cauchy principal values must be taken. Thus, the arrival of
the Rayleigh wave at each crack tip is indicated by the change in the form of the convolution
integrals in equations (36).

Numerical calculations of equations (36) are presented and discussed in Section 5
along with similar ones for the normalized shear stress intensity factors which are derived
below.
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(b) Anti-symmetric problem

In the anti-symmetric problem, « and 7,, are odd functions of y and so they vanish at
y = 0 for x < 0 and x > 1. Furthermore, the incident wave [equation (9) with the lower
sign] produces zero normal stress at y = 0 and the shear stress

t9(x,0,1) = T', f(t —x cos &) (38)

Thus, by introducing unknown functions for 4 in 0 < x < 1and 1§)in x < 0and x > 1
along the boundary of the half-space, y > 0, we can again extend the boundary conditions
(N to

Wk, 0% 1) = {sz(x, ty20x*—1) for0 <x<l1 (39)
0 otherwise

$(x,0,£) = 0 for all x (39b)
golx,t) forx <0

(x,0,1) ={ —T,f(t—xcosa) for0<x <1 (39¢)
gi(x—1,1) for1 < x

At this point the analysis proceeds exactly along the lines described in (a) above for the
symmetric problem and we are lead to the generalized Wiener—Hopf equation

ir,f

C—icosa (l_e-scosa—i{s) (40)

=P NP +Y)KQ) = Qs +e7 0+
where 0, are the Fourier and Laplace transforms of q, and q,, respectively, and K({)
was defined by equation (19).

Note that equation (40) is the same as the previous generalized W-H equation (18)
except that § appears on the left side of (40) instead of a. Of course there are the obvious
changes from I'; to I', and in the symbols for the unknown +, — and E functions.

Therefore, we shall omit all the remaining details of analysis leading to the first order
results for the shear stress intensity factors. In fact, by replacing {4i by {+ix in the
expression for D, in equation (23), the first order solution of equation (40) is immediately
obtained from equations (26). Thereafter, the algebraic calculations become slightly
different, but the procedures are identical to those in (a). We obtain the leading terms for
the shear stresses at the crack tips as

~(1), s> \*
S2E00) (Tclxl) rzf(s)[
as x - 0~ and

VRO B & (k—cosa)?e e
sqi (x—1) (n(x—l)) rzf(s)l:(y——cosa)K_(iCOSOt)

(k+cos a)* _ (x—cos a)te scos4] (a) @la)
(y+cosa)K .(icosa) 2n(y—cosx)K_(icosa)

(k+cos )T ,(m~a) +
- 41b
2n(y +cos a)K (i cos o) asx—1 (41b)
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where

_ A e 8] l _ %

Jy(a) = f AA—K)A2=1)F(h, w) e di+ )(« (A2 - x2/2)2(H—K) F,)e *di (42
1 x K

and F(4, o) was defined by equation (28).

The above expressions contain the dynamic shear stress intensity factors for an
arbitrary incident P wave profile. However, when f(t) = (3)t*> which produces in the long-
time limit, the static loading (34), we can normalize equations (41) by the known [8] static
shear stresses at the crack tips,

Tyy(x, 0) = asx —» 0~ (43a)

2
2|x|*

r
T,(x—1,0) - 2()(—_21)% asx — 17 (43b)

and thereby define the “‘normalized dynamic shear stress intensity factors” K, (0 or 1, ¢).
We obtain the results

_4 [(k+cosa)]? _[{x—cos a)(t —cos a)] Y st o)

K500 = 7 {(y +cos a)K , (i cos a) 2n(y —cos a)K _(i cos o) H{t=cos a)} (44a)
_ 4[(x—cos a)(t —cos a)]* B _ [+ cos a)t]* * Jo(t, m—or)

K, 0 = E{(y —cos 0)K _(i cos a) H(t=cos 2) 2n(y +cos a)K . (i cos a) } (44b)

where J,(t, ) is found from equation (42) by inspection.

Note that I', [=sin 2a; cf. equations (6) and (34)] vanishes when a = =/2, which is
the case of perpendicular incidence. Thus, both the static and dynamic shear stress intensity
factors are zero in this case and their ratio, while non-zero, appears to be physically meaning-
less. However, for the problem of a normally incident SV wave, i.e.

99 =0, Y9 = Ja—xy)

neither the dynamic, nor analogous static, shear stress intensity factors are zero and their
ratio happens to be equal to the expressions in (44) with « = n/2. In other words, equations
{44) are significant for all values of o in 0 < o < #/2, but at & = n/2 their significance is
attached to a different problem.

4. SEPARATION OF CRACK SURFACES

In the foregoing analysis it has been assumed that the top and bottom surfaces of the
crack are always kept separated. For otherwise, at the instant and at points where the crack
surfaces closed, the boundary conditions (7) would be invalid and would have to be changed
to specify continuity of the vertical displacement and normal stress along the crack and,
in the case of smooth surfaces, zero shear stress. A continual separation of the surfaces
could be achieved by imposing a static tension in the y-direction of sufficient magnitude
to prevent the crack from closing during the dynamic events. Alternatively, one could
use the crack model as an approximation to a thin elliptical cavity whose surfaces remained
separated even when our solution might predict that the line crack would close. However,
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in the former situation, the stress intensity factors obtained here would be incomplete,
as an additional static field would exist; while in the latter case, our results would only
be approximate.

Therefore, we are interested to know whether the crack will actually remain open
under the action of the incident wave (33) which produces a tension in the y-direction (6)
and thus initially separates the crack surfaces. Papadopoulos [9] has found that for a
tensile wave, incident upon a semi-infinite crack, the surfaces still would close after the
diffracted Rayleigh wave has passed. Also, for an oscillating incident wave, such as the
plane harmonic wave considered by Sih and Loeber it was pointed out that the finite
crack would open and close in cyclic fashion and so a static tension would have to be
imposed [1]. In our problem, however, it is not apparent that either of the above findings
are duplicated. Certainly the harmonic wave results are not applicable. Furthermore,
while we observe that the finite crack tends to close in the wake of the first scattered
Rayleigh waves, it is found that before the crack can actually close, the second series of
scattered waves will have been generated and these may very well keep the surfaces
separated.

To calculate the relative displacement between the crack surfaces, ie. k’g(x,t)/
(k2 —1) = h(x, t), we use equations (11a) and (18). Substitution of Y and Y*® into equation
(18) yields G¥ from which h™(x, ) can be calculated by inversion of the transforms and
which will be an exact result for a finite time. Unfortunately, we have found it so far too
complicated to obtain A‘*(x, t) which would cover the time period during which the stress
intensity factor results are exact. This is because the inverse Fourier transform of G’
cannot be performed easily and in closed form as was the case for Y{) when we considered
only the leading term for the stresses at the crack edges. Therefore, we examine the zeroth
order solution h‘®(x, t) which will be exact at a point x along the crack until the first
rescattered P wave arrives, i.e. at the smaller of the times 1+coso+x and 2 x. These
are the arrival times for the rescattered P waves which originated at the edges x = 1 and
x = 0, respectively.

Details for obtaining h'”(x, ) consist of substituting equations (25) into (18); inverting
the Fourier transform for Gf’ which includes deforming the integration paths around
appropriate branch cuts in the {-plane; and then inverting the Laplace transform by the
convolution theorem. Equation (45) below is the result when f(f) = t3/2 and a = n/2,
i.e. the case of normal incidence.

WO, 1) = 2t + %[H(t —x) ((t, x)+ H(t — xx)] (1, x)

+H(t—1+01(t, 1 —x)+ Ht — x+xx),(t, 1 — x)] (45)
where
t/x
e = f o= %! (@6a)
1
tx
Li{t,x) = JC n(n* — 1¥n* — x*)*M(e, x, n) dn (46b)
with )

(t—nx)(n—1)*K , (in)

Mit,x,m) = n*—a})(n*—ad)(y—n)’

(47)
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The first term in equation (45) represents the effect of the incident tensile wave and
its reflection from the bottom surface of the crack. The integrals I, and I, represent the
first scattered P and S waves, respectively, that emanate from x = 0 and 1, while the
scattered Rayleigh waves are again indicated by the change of I, and I, to principal value
integrals when their upper limits exceed y. If we delete the integrals with argument 1 —x,
we obtain the exact solution for a semi-infinite crack along the positive x-axis. Thus, we
observe Papadopoulos’ finding that this crack will eventually close after the Rayleigh
wave passes [9]. This is because I, and I, become negative when their upper limits exceed
¥t and an asymptotic analysis of these integrals for large time shows that they decrease
faster than 2t and so will dominate the leading positive term in (45). However, for the
finite crack, we can interpret equation (45) only for t < 1+x when 0 < x < 1. (Because
of the symmetry, when « = n/2, we only treat half of the crack.) Beyond this time the
rescattered waves must be included.

Numerical results for h%(x, t) are plotted vs. time for different values of x in Fig. 2.
The integrals in equation (45) were evaluated by a similar technique to that described in
the Appendix for the integrals in equations (36) and (44). Note that the crack stays open
during the passage of the first series of scattered waves across its width. Of course in the
long time limit the crack will be opened since the field becomes one of uniform static
tension (34). However, further calculations are required to determine whether the finite
crack will indeed stay open during the time period in between, thus making it unnecessary
to superimpose a field of static tension.

To determine the jump in the vertical displacement in physical units the ordinates in
Fig. 2 must be multiplied by Ito/u where [ is the actual crack width, k?t, is the normal
stress associated with the incident wave and u is the shear modulus of the medium.

2.8
X=0.5
2.5

x=0.25

h (x,t)

(o)

X=0.1

0.5~

0 | i
o] 0.5 1.0 1.5

t
FiG. 2. Magnitude of vertical separation of crack surfaces 4% vs. time at various points x along crack for
o=90°andv = }.
t Note that in the integrands in (46) K . (in) is positive and both a, and a, are less than unity. Thus for ¢/x < y,
I, and I, in (46) are positive.
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5. NUMERICAL RESULTS FOR INTENSITY FACTORS

745

The time variations of the crack-tip, stress intensity factors are shown in Figs. 3 and 4
for various angles of incidence and Poisson’s ratio v = 4. This yields x = 3*and y = 1-8839.
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FiG. 4. Normalized shear stress intensity factors K;; vs. time for various values of x and v = %,
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Transient stress intensity factors for a finite crack in an elastic solid caused by a dilatational wave 747

By following the procedure described in the Appendix for evaluating the principal value
integrals in equations (36) and (44), we were able not only to perform accurate numerical
calculations, but also were successful in extracting analytically the contributions of the
scattered Rayleigh waves. By so doing we are able to show that the maximum dynamic
intensity factors occur exactly at the instant of arrival of the scattered Rayleigh wave
from the opposite crack tip, provided that this event is realized before the rescattered P wave
returns to the tip of interest, i.e. before the period of validity of our solution expires.

Forexample,at x = Othe first scattered Rayleigh wave from x = 1arrivesatt = y+cos a
and the second scattered P wave returns at t = 2. Thus, only when y+cos o < 2 (a > 83-3°)
are the maximum dynamic intensities found from the “first order” solution [cf. Figs. 3(a)
and 4(a)]. On the other hand, at x = 1 the first Rayleigh wave arrival is at t = y for any
angle of incidence and there our solution is exact up to t = 2+ cos a. Hence, we always
find the peak intensity factors at this edge [cf. Figs. 3(b) and 4(b)].

To see that the peak intensity factors occur at t = yat x = 1 (or t = y+cosa at x = 0)
we consider the expression derived for the integral in the Appendix. It is the sum of a
continuously differentiable function of t at t = y plus a non-differentiable function pro-
portional to (y—t)*H(y—t). Noting the minus sign before the integrals in equations (36)
and (44), we see therefore that the slopes of the intensity factors will approach + o as
t — y~. Furthermore, since the non-differentiable function vanishes for ¢ > v, it is easily
seen that the intensity factors have a finite slope at 1 = y* which is found numerically to
be negative. Hence the intensity factors peak at ¢t = y and the computer calculations show
that these peaks are the absolute maximum values in the time intervals treated.

The maximum normal stress intensity factor is found to be about 1.30 which agrees
closely with the value reported by Sih and Loeber for an incident harmonic P wave [1].
Interestingly, there is hardly any change in the peak value with angle of incidence at x = 1
as seen in Fig. 3(b). At x = 0, the peak value occurs after ¢t = 2 for the acute angles of
incidence considered. For a = 77-3° the second scattered P wave arrives before the first
scattered Rayleigh wave, while at 60° it arrives ahead of both the first scattered Rayleigh
and shear waves.

The shear stress intensity factors, shown in Figs. 4, exhibit relative maxima shortly
after the first scattered P wave arrives and then they reach absolute peaks at the Rayleigh
wave arrival time. These peak values increase very slowly with decreasing angle of incidence,
as seen in Fig. 4(b), remaining near 1-2. Recall that the shear intensity factors at 90° are for
an incident SV wave and they are normalized by the equivalent static factor for that prob-
lem. In this case the peak value is found to be 1-18 which agrees closely with the result of
Sih and Loeber for a normally incident harmonic SV wave [1].

6. SUMMARY AND CLOSURE

The maximum dynamic stress intensity factors have been found to exceed the analogous
static values by 30 per cent for the normal crack-tip stress and by 20 per cent for the shear
stress. These results occur at the instant of arrival of the first scattered Rayleigh wave from
the opposite crack tip.

Since our solution is valid only during the first time period for a P wave to twice
traverse the width of the crack, it is not possible to show here whether or not these peak
values are indeed the maximum ones for all subsequent time. However, there are evidences
that they actually are. First, the analogous harmonic wave results of Sih and Loeber [1]
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predict the same maximum values. Hence, after the incident P wave, with its constant
stress profile, has traveled two crack widths past the crack, it is not expected that a later
relative maximum intensity factor would exceed the initial peak value and the one found
from the steady-state response. Next, previous experience with transient wave interaction
problems, in which the scattered waves propagate steadily outward to infinity and thus
continuously remove energy from the vicinity of the obstacle, indicates that decaying
responses with time are typical. These may or may not oscillate about a limiting value.
Finally, and in keeping with the previous remarks, Ravera and Sih [10] have found the
moderate to long time transient solution for a finite crack problem involving SH waves;
and their result shows the normalized stress intensity factor oscillating with a decaying
amplitude about the static limit as ¢ increases.
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APPENDIX

To calculate accurately the principal value integrals occurring in equations (36} and
(44) we found it useful first to replace K2 (i) in the integrands by the rational function
approximation,

g+ h+a,A?
Bo+4

with o = 1-03066146, o, = 0-9994148, «, = 0-00006683 and B, = 1-62566276. This
function agrees with the exact one calculated from equation (22) to six decimal places in
1 < 4 £ 2.5 which is the maximum range of values required for our calculations. Then
each of the integrals can be expressed in the general form:

Ki(id) ~ (A1)

1) = (“”)(4)* ”da (t > b) (A2)

where b is either unity or k and S(A) is a rational function whose poles do not lie in the
interval of integration for any t > b.
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Using the identity

i _ A=y i
(A+b) _m(i+b)*+(y+b)*+(y+b) {A3)
we may write I(t} as
=AY swda N
I(t)—L(l_b) et ausrma RO (Ad)
where
cfe—a\t s@
J@t) = )C (2—_:-5) ,1—(—% da. (A5)
b

The substitution A —b = u? renders the first integral in (A4) a proper one of a finite function
that is easily evaluated by the computer. The second integral, J{t), can be evaluated in
closed form as follows:

We suppose that for large 4, S(1) has the asymptotic expansion

S(A) ~ A2+ A A+ A +0(A7Y) {A6)
where 4,, A; and A, are found explicitly by long division.t Then we define
T(A) = S(A)—A,42 — 4,4 (A7)

and note that T has the same poles and same residues at them as S and that T ~ A4, as
A — oo. Substituting (A7) into (A5) and using the relation

2 A 2
A+ AL Az(1+)’)+A1+M (A8)
A— A—y
yields
m—f FRITTR) Laid iy ﬁm)m seam A A )
0= bf 2Ty U A 2¥ 241 Sy -y

The first integral in (A9) can be reduced to an elementary one by the substitution
(A—b)/(t—b) = sin® f and then evaluated in closed form. The second one, denoted by
L{¢), say, can be determined from the contour integral,

1
At) = %_L [T(z)+A2y2+A1y]( (A10)

z—b} z—y
where C consists of a circle I' of infinite radius, traversed in the counterclockwise sense,
and a “dumbell” contour D around the branch cut between z = b and z = 1, traversed
in the clockwise sense as shown in Fig. 5. When y > ¢ the contour C encloses a pole at

z = y; when y <t the dumbell path D must encircle the point z = y, but the residue

z—‘lt)ir dz

+In no case encountered here does S(A) increase more rapidly than A? for large A. In some, 4, or A, and
A, are zero.
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z - Plane

Fi1G. 5. Contour for integral A(t) for case t > y. For y > t the paths along the branch cut are unbroken
straight lines. Poles of S(z) are not indicated.

contributions from the upper and lower semi-circles will cancel. The integral along T’
itself, where z = Re® with R — oo, can be shown to equal (4,4 4,7+ A4,y?) and the
integral along D is equal to L(t)/n. Therefore, by Cauchy’s formula we find

1 y—r\? 2
— L(ty = SO —| Hy—1)—(Ao+ A7+ A7)
n y—b

z—

+ Y residues of 3() (ZT—;) at poles of S(z). (A11)

In (A11) we have replaced T by S from equation (A7).

Note that the first term in equation (A11) represents the effect of the Rayleigh wave
since it vanishes precisely at t = y and provides an infinite slope for I(t) for t = y~, but
not for t = y*. It can, in fact, be shown that the slope of Kt) changes sign at y = t and
therefore I attains a peak value at this time.

(Received 7 August 1970)

Abctpakt —MHMccneayercss OTpakeHde TUIOCKOM BOJIHBI  PACLIMPEHMSI, TMPOM3BOJIBHOIO mnpodunsa, or
KOHEYHOH NUHeiHOH| wenu, B 6eckoHeuHOR ynpyroii cpeae, npu nomolun o6o6wweHHoro cnocoba Buuepa-
Xompa. CocTaBiSIIOTCH BbBIPAXEHHs, B SIBHOM BHAe, M (PAKTOPOB MHTEHCMBHOCTM AMHAMMYECKHX
HOPMaJlbHbIX HAMPSHKEHWI M HATPSHKEHUI caBura, A1 KaXIOro Kpasi LIeSM, IPEeACTAB/IEHHbIE B Ka4eCTBE
dyHkUMi BpemeHy, yria nageHus u uydcna [Myaccona. JTH pe3ybTaThl OKa3blBAKOTCA TOYHBIMH B MOMEHT,
KOra yaapsiollas BOJIHA JAOXOAMT A0 3aJ@HHOIO Kpasi, [OKAa KaK OTPaXeHHas BOJIHA [OCTMraetr
MIPOTUBOMONOKEHHOTO Kpasi, OTPaXKaeTcsi CHOBA M 3aTeM BO3BPAIIAETCS K MEPBOHAYANBHOMY Kpaxo, TO
€CTb B TEYEHHUE BPEMS MEPEX0JA IWMPUHBI L1eU ABYX NPOAOAbHbIX BOJH. JaI0TCA YMCIICHHBIE PE3Y/TbTAThI
U1 yaapsiiolleid BoaHbL B BUAE CKAdyKo-00pa3HOH QyHKLMM HANPAXKEHHS, AJIA DPA3HBIX YIJIOB MANEHHSA.
Haxoautcs, 4ToO MakcMMaibHasi MHTEHCHBHOCTh HOPMAaNbHbIX HanpsaxeHuit okaspiBaercs Ha 309, 6onbuie,
4eM aHAJOTHYeCKUil CTUMHYECkuit ¢akTop. BenuyuHa ckauka, B BEPTHKANBHOM MEPEMELIEHNH BEPLIHHDI
ule/id, pelaeTcst IUiA Chy4ass HOPMAaJIbHOrO Mafl€HHs, B TEYCHHE BPEMEHM Mepexoaa €OHHCTBEHHOH
NPOJOABHOM BOJIHBI LIk, B 3TO BPEMS, OCTAETCS O1 KPLITOM.



